

BRAIN INJURY VISION SYMPTOM SURVEY (BIVSS): PRELIMINARY COMPARISON DATA AND RASCH ANALYSIS

Hannu Laukkanen, OD MEd FAAO | John R Hayes, PhD

Pacific University College of Optometry | 2043 College Way | Forest Grove | Oregon | 97116

ABSTRACT

The BIVSS is a 28-item scaled survey designed to query vision behaviors related to: clarity, comfort, diplopia, depth perception, dry-eye, peripheral vision, & reading with individuals who have suffered mild-to-moderate brain injury.

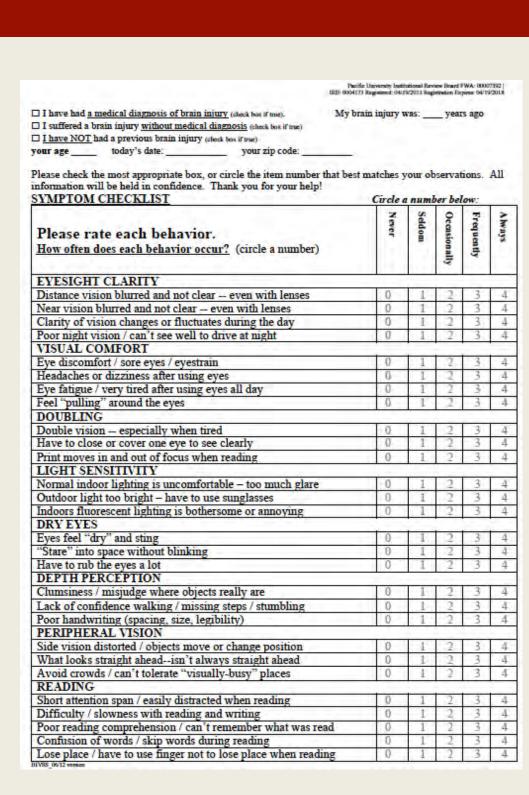
Anonymous BIVSS data were analyzed from 219 individuals (62 TBIs & 157 non-TBIs). TBI results significantly differed from non-TBIs. A raw BIVSS score of ≥45 was determined as discriminative of a significant visual problem for the 28-question survey.

TBI completion success:

93.5% of TBI subjects able to complete at least 27 questions

Non-TBI completion success:

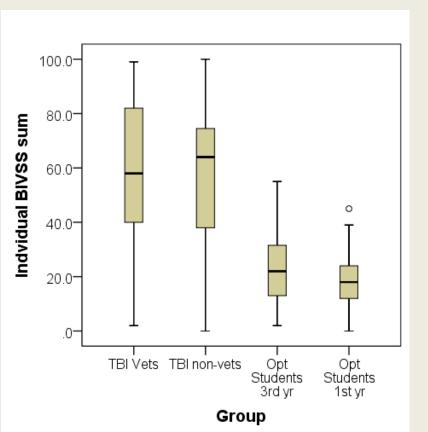
100% of subjects able to complete all 28 questions


Rasch analysis identified 10 of the 28-questions as either redundant or as misfit. Analysis of the reduced set of 18-questions yielded excellent specificity (96%), good overall accuracy (90%), and moderate sensitivity (76%). For the 18-question reduced set, a raw score of ≥28 was determined as discriminative of a significant visual problem.

Whereas Univariate Rasch Analysis assumes only a single factor, Factor Analysis of the 28-item responses suggested up to 5-underlying dimensions potentially.

SUBJECTS & METHODS

-Anonymous BIVSS data were obtained from: 1) active-duty soldiers, & 2) TBIs participating in a support group, plus TBI patients of optometrists who attended the 2013 NORA meeting. -Self-reported non-TBI optometry students from two different classes, served as controls. Newly matriculated 1st yr students & 3rd yr students (1-wk before NBEO examinations) completed BIVSS surveys.


Multivariate ANOVA & Rasch Analysis were used to analyze questionnaire results

BIVSS questionnaire (28-item full-length)

RESULTS

Total Scores (Raw Sums) of 28 BIVSS Questions

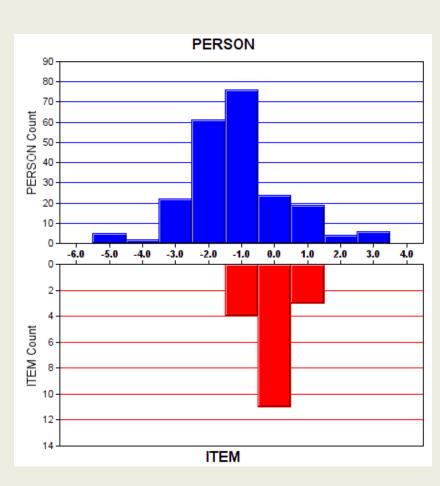
Misfit Analysis

- Boxes represent the 25th to 75th percentiles. Bars in the center are the medians

 Little overlap between current TRI patients (vots and
- Little overlap between current TBI patients (vets and non-vets) and normal optometry students
- Overall non-parametric Kruskal Wallis comparison of 5 distributions was significant, p<.001
- 3rd years had a significantly different distributions than the 1st year optometry students (p=.035, Wilcoxon), but the median test was not significant between the two groups (p=.10).

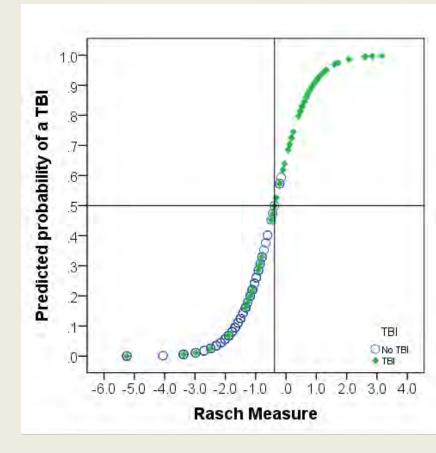
Rasch Analysis

 10 items were removed from the original scale to reveal a single dimension scale with item separation = 6.50 and a person separation of 2.94.

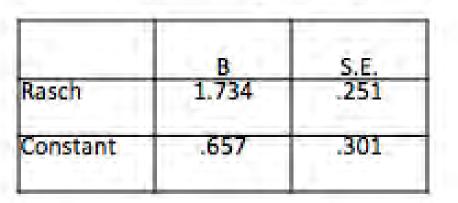

Final 18 questions

- Clarity of vision changes or fluctuates during the day
- Eye discomfort / sore eyes / eyestrain
- Headaches or dizziness after using eyes.
- Eye fatigue / very tired after using eyes all day
 Feel "pulling" around the eyes
- Print moves in and out of focus when reading
- Normal indoor lighting is uncomfortable too much glare
- Indoors fluorescent lighting is bothersome or annoying
- Clumsiness / misjudge where objects really are
- Lack of confidence walking / missing steps / stumbling
- Side vision distorted / objects move or change position
 What looks straight ahead—isn't always straight ahead

Poor reading comprehension / can't remember what was

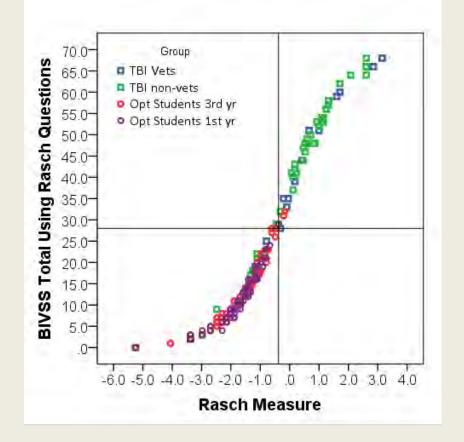

- Avoid crowds / can't tolerate "visually-busy" places
- Short attention span / easily distracted when reading
- Difficulty / slowness with reading and writing
- read
- Confusion of words / skip words during reading
 Lose place / have to use finger not to lose place when

Rasch analysis item and person distributions



- The Rasch analysis revealed a single dimension scale comprised of 18 items.
- Rasch analysis assumes questions/items fall along the dimension. The red histogram shows the distribution of questions on this dimension
- The blue histogram shows the distribution of people across the dimension. People on the left have few symptoms and people on the right have more severe symptoms.
- The scale is centered at the middle of the item distribution.
- The area where red and blue distributions overlap shows the highest point of scale discrimination.
- The scale does not discriminate between people with lower levels of symptoms.

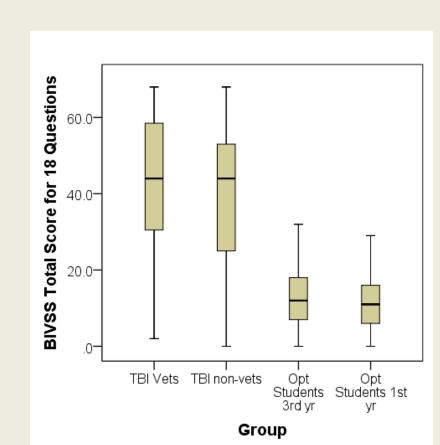
Logistic Model


Predicting TBI as a function of the 18 item Rasch scale with logistic regression

- p(TBI) = .5 = -Constant/B
- = -.657/1.734 = -.38
 The model was able to correctly assign 90% of the people to the correct categories.

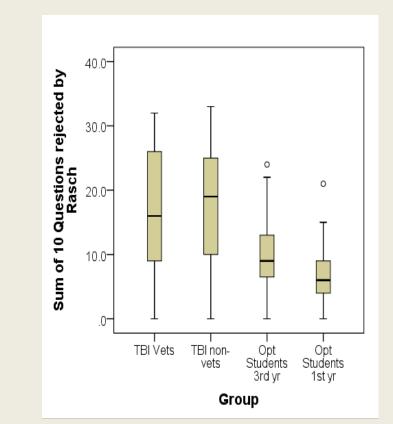
RESULTS (cont)

Relationship between the Rasch measure and the raw sum of the 18 question scale


A Rasch score of -.38 approximately equivalent to a BIVSS sum of 28 on the 18 item questionnaire.

			TBI		
			No TBI	TBI	Total
Predicted pN TBI Sum18 pT		pNon TBI	151	15	166
		pTBI	6	47	53
Total		157	62	219	
•	Sensitivity = 76% Specificity = 96%				
٠	Overall Accuracy = 90%				
	We cannot compute positive				
-	AAC	camnocc	ompute.	positive	

know the prevalence of TBI.


nigh value on the BIVSS (>=28) is

Group Comparison for Total Sum of BIVSS for the Reduced Set of 18 Questions

- The overall Kruskal Wallis nonparametric test was significant (p<.001)
- Neither the Wilcoxon (distributions) nor the median test indicated a difference between optometry student groups
- Neither the Wilcoxon (distributions) nor the median test indicated a difference between TBI patient groups.

Consideration of questions not included in the Rasch Primary Dimension

- Backward conditional stepwise logistic regression revealed 8 of the 10 questions contributed independently to discriminating between 1st and 3rd year students
- A non-parametric median test between 1st and 3rd
 year was significant for the sum of all 10 questions
 (p<.006) and for the sum of the 8 significant questions
 (p<.005).
- Significant predictors of Opt Class

Distance vision blurred and not clear — even with lenses

Near vision blurred and not clear — even with lenses

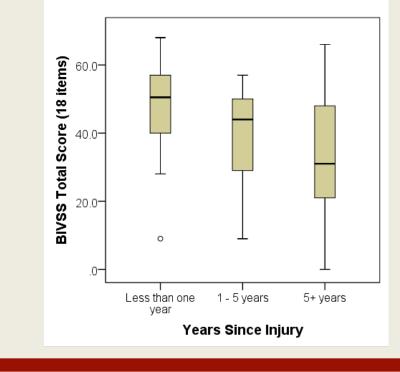
Poor night vision / can't see well to drive at night (p=.076)

Double vision — especially when tired

Eyes feel "dry" and sting

"Stare" into space without blinking
Have to rub the eyes a lot
Poor handwriting (spacing, size, legibility)

Not significant


Have to sless

Have to close or cover one eye to see clearly

Outdoor light too bright – have to use sunglasses

 The rejected questions are multidimensional and do a better job discriminating at the lower end of the symptom scale

BIVSS score as a function of years since injury

- Years since injury were available for most of the non-Vet TBI patients.
- There were 12 who had an injury within the last year; 10 with an injury 1-5 years; and 14 with injuries 5+ years
- The difference between years was not significant. This may well be a statistical power problem as there is a clear and plausible trend

CONCLUSIONS

Most all mild-to-moderate TBI can complete the BIVSS

There was significant mean score separation between TBI & non-TBI groups (on both 28 & 18-item versions)

- No diff between soldier vs. non-soldier TBI groups
- No diff btw 1st vs. 3rd yr. non-TBI opt students on 18item BIVSS, but groups differed on 28-item BIVSS
- 8/10 questions not included on abbreviated BIVSS contributed to discriminating 1st vs. 3rd yr. non-TBI opt student groups

BIVSS raw scores mirror Rasch computed scores, so use of raw scores may be clinically appropriate

Specificity = 96% / sensitivity = 76% / accuracy = 90% The 18-item version better at discrimination with higher total scores, but less so with lower raw score totals

Most likely to miss TBIs with low-level symptoms

The cutoff scores (indicating a significant vision problem) were 45 & 28 (for the full 28-item BIVSS & the 18-item reduced set, respectively)

Rasch analysis assumes a single dimension drives the responses to all of the questions. Factor analysis of the 28-item BIVSS results suggested multiple underlying factors may have contributed

• To confirm, a larger BIVSS TBI database is needed

BIVSS scores appear to trend downward as a function of time since the brain injury

Future research with the BIVSS is planned

DISCLAIMER

- The BIVSS appears to have a very clear association with TBI, but it is not diagnostic. There are other vision problems that may score high on the BIVSS
- We use the sum of the BIVSS as a convenient scoring method for clinicians after including questions based on Rasch analysis.
- There was missing data. Missing values were filled in by the integer of the mean of that question across subjects within a group and the mean of all the questions for that subject.

ACKNOWLEDGEMENTS

Thanks to Dr. Hayes for his statistical support, all of the TBI individuals and students who completed BIVSS questionnaires, and Tiffany Kim for her data support

CONTACT INFORMATION

Hannu Laukkanen, OD MEd Clinical Professor

T: 503.352.2751 laukkanh@pacificu.edu